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ABSTRACT 

 

Software Defined Radios (SDR) wideband mobile terminal 

must be capable of high-speed data processing while 

consuming low power and keeping the design and 

manufacturing costs as low as possible. In order to make 

SDR nodes mobile, the power consumption is the major 

design issue. Analysis of power consumption for the various 

implementations is challenging, since each implementation 

contains its own benchmarking tools and thus the results are 

not comparable. In this paper, we use the GroundHog 2009 

benchmark suite, designed to be platform independent, to 

evaluate power dissipation of four modern FPGAs and one 

microcontroller. We also introduce generic RTL library for 

the GroundHog design cases and test bench infra-structure 

to make the toolset usage easy.  In addition, we show how 

much power can be saved by using clock management, 

available on the one of the FGPA-boards. The power 

savings range from 38% to 1150%. 

 

1. INTRODUCTION 

 

Software Defined Radios (SDR) call for efficient and highly 

configurable platforms that allow implementation of the 

rapidly evolving 3G and 4G digital wireless communication 

standards. There are various implementation technologies, 

which can be used for such a purpose depending on the 

requirements of the application at hand, e.g., Field 

Programmable Gate Arrays (FPGA), Digital Signal 

Processors (DSP), General-Purpose Processors (GPP), 

Application-Specific Integrated Circuits (ASIC), or a 

combination of these. 

 FPGAs are often used as SDR platform, since an SDR 

wideband mobile terminal must be capable of high-speed 

data processing, low power consumption and low design 

and manufacturing cost [1, 17]. Especially in the mobile 

domain the power consumption or average energy 

dissipation is a critical as it determines the battery life. Also 

the peak current has to be considered for thermal aspects. 

The analysis of the power consumption of different 

implementation methods is challenging as there is large 

variation between different implementations even on a one 

particular target technology, i.e., an FPGA can be designed 

for low leakage current but a poorly designed configuration 

may consume more power than a good design on an FPGA 

with higher leakage current.  

 For fair measurement of the power consumption for 

different implementation methods, not only the application 

but also the input of the system should remain the same. 

However the input of the system should not be one fixed set 

of inputs, since one might optimize the measured system for 

a specific case and the results are not realistic. 

  Evaluation and benchmarking power consumption of 

the reconfigurable architectures has been achieved by using 

existing benchmarks [7], such as MCNC [2], or by modeling 

power consumption using circuit models and in house 

designs. Much of the previous work [3, 4, 5], allows power 

measurements on reconfigurable architectures, but they do 

not realistically model modern applications on these 

devices. As for earlier benchmarks, such as MCNC, there 

are no input stimuli and they are implemented in low level 

design descriptions. 

 The GroundHog 2009 (GH09) benchmark suite has 

been developed to fill the gap between existing benchmarks 

and requirements of the mobile domain applications in the 

near and far future [7]. The GH09 includes seven designs; 

one targeting fine-grained FPGA fabrics and six designs that 

are specified at a high level, allowing them to target a range 

of reconfigurable technologies. The designs in the GH09 

can be stimulated with synthetically generated input and 

verified against the golden model output created by a tool 

included in the suite.  The suite can be used as a tool to 

evaluate the power consumption of the different target 

technologies and it can also give guidance for selecting a 

suitable method for low power implementation.   

 In this paper, we use GH09 benchmarks to evaluate 

power dissipation of four modern FPGAs targeting the 

mobile domain and one microcontroller. We introduce basic 

HDL-implementations and test bench infrastructure for the 

power measurements for each of the high level designs of 

the GH09. The basic HDL-designs and test bench 

infrastructure is made publicly available [19] and hopefully 
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will made the starting to use the GH09 suite more 

interesting.       

 The reminder of this paper is organized as follows: 

Section 2 describes our benchmark suite in details. Section 3 

describes the mechanism to feed the input stimulus to the 

Device Under Test (DUT) and the verification of the DUT. 

Section 4 describes the measurements carried out for four 

low power FPGAs and one microcontroller. Finally, Section 

5 concludes the paper. 

 

2. GROUNDHOG BENCHMARKS AND TOOLS 

 

At present, most researchers agree that it will be challenging 

for reconfigurable architectures to be included in mass-

market mobile devices even with the benefits of flexibility 

of design. The limiting factors for this adoption are power 

consumption, cost, and lack of advanced low power modes 

where power is reduced significantly when the device is 

idling or performing low throughput tasks. GroundHog 

2009 is a benchmarking suite that  targets reconfigurable 

architectures in the mobile computation domain with the 

goal of providing the means to evaluate current and future 

technologies for low power and increase innovation in this 

field so that someday reconfigurable architectures are 

adopted. There are a number of challenges in creating this 

benchmark to meet the following goals: 

 Collecting realistic (open access) designs that are 

used in current and future mobile devices. 

 Allow the benchmarks to be mapped to the wide 

range of reconfigurable architectures, which 

include FPGAs, CPLDs, coarse-grain architectures, 

multicore systems, and even microprocessors. 

 Stimulate the designs with actions a system will 

likely perform in current mobile devices and future 

mobile devices. 

 Create a methodology in which the wide variety of 

technologies in mobile devices can be described so 

that architectures can be designed to target these 

specific instances. 

 Prevent system or tool optimizations for a specific 

benchmark, while still encouraging innovation. 

GroundHog 2009 has been created as the first attempt to 

satisfy these challenges. There are four main elements of the 

benchmark suite that make-up this innovative framework 

and address many of the challenges described. They are: 

(1) providing high-level design descriptions; 

(2) providing synthetically generated, parametrizable 

input stimuli; 

(3) allowing the environment to be uniquely specified; 

and 

(4) allowing early baseline fabric analysis of fine-

grained FPGAs. 

 Fabric analysis is included in the benchmark suite to  

allow our community to quickly evaluate the power 

consumption of fine-grained FPGAs. 

 

2.1. GroundHog 2009 Bencmark Suite 

 

GroundHog 2009 (GH09) consists of seven designs and 

accompanying infrastructure that allows a benchmark user 

to create input stimuli for these designs and to verify their 

implementations against a golden model. The seven designs 

are: 

 GH09.B.0 - Fabric analysis 

 GH09.B.1 - Port expander and keypad controller 

 GH09.B.2 - Glue logic  

 GH09.B.3 - Encryption 

 GH09.B.4 - Data compression 

 GH09.B.5 - Bridge chip 

 GH09.B.6 - 2D convolution 

Designs starting from GH09.B.1 are described in details in 

chapters: 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5 and 2.1.6. 

 GH9.B.0 is an application-independent test case 

designed to evaluate the basic characteristics of the FGPA 

fabric, the other cases are functional descriptions of 

applications, which are representative for mobile systems. 

The GH09.B.0 is left out of the scope of this evaluation; 

detailed description of this case can be found [18]. These 

designs were selected because they are simple, but represent 

the properties of a range of possible designs. For example, 

the 2D convolution design evaluates how a technology can 

efficiently implement arithmetic operations. On the other 

hand, the data compression design evaluates how a 

technology can efficiently implement memories that are 

accessed in pseudo random fashion.  

 These benchmarks were chosen by studying at existing 

mobile phones and questioning what might a reconfigurable 

device be useful for and what are common functions within 

a communicating mobile device. Both the port expander and 

bridge chip are included because these designs address a 

common problem within mobile devices by expanding the 

number of pins. This is the case since the baseband 

processor is pin limited. Similarly, glue logic implements 

pin expansion as well as other types of custom connectivity 

potentially needed for a mobile device. The 2D convolution 

design was included as a common algorithm used in the 

both digital radio transmission and reception, and it is also 

used in many DSP applications including graphics 

processing. Both encryption and data compression are 

algorithms that might be used as hardware acceleration for 

applications loaded onto the phone. They might also be 

included as parts of the radio transmission depending on the 

mobile device. For example, many military applications 

require encryption hardware on the transmission path. 

 In addition to the designs, we have also included open-

source software tools to aid the benchmark users in building 

a measurement framework for their implementations. The 
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tools allow benchmark users to create input stimuli, in XML 

format, to evaluate their solutions. These stimuli can be 

created to model continuous throughput inputs as well as 

intermittent stimuli that more closely model the on/off 

activity within a mobile device. The stimuli is described as 

an events and time stamps when event occurs. This is 

illustrated in the figure 1: the event is described with 

<event> and <time> describes the time when event is 

occurs, <name> shows which object the event is concerning. 

An object type is specified within the test design 

specifications, i.e. serial, parallel or a block of data.  

<value> identifies an object inside the object and set the 

value of the object. The XML file also contains information 

about the design environment, the minimum acceptable 

heartbeat of the system (the minimum time between events), 

and serial data arrival. It can also contain conditions for the 

design, i.e., when the system interrupts what actions the 

system excepts from the “master” device. 

 An included tool also provides a golden model 

simulator to help benchmark users to verify correctness of 

their implementations. In this way, benchmark users can 

look at the software emulation of each of the six designs and 

analyze the behavior of their implementation for a given 

input stimulus. This helps in both understanding the 

expected behavior of a benchmark design and verifying 

whether the implemented version on a reconfigurable 

architecture is behaving correctly. The golden model output 

is also provided in XML. The reference output specifies the 

earliest time when the output data could arrive, but the latest 

arrival time is not specified. The data arrival is left to be 

specified in the environment variables.  

As for the input stimuli the time stamp only defines the time 

when data is ought to be received, not the time when it 

should be processed. Detailed description of the designs, 

stimulus generation and environments can be found in our 

earlier work [7,8,18].   

2.1.1 GH09.B.1- Port expander and keypad controller 

The design is used to expand the number of ports of the 

master device and at the same time to work as a keypad 

controller. The design has a serial data input and output and 

16 general-purpose IO ports, which can be programmed 

through a serial interface. The design contains two interrupt 

signals, which is used to notify the master device if a key is 

pressed on the keypad or a general-purpose IO has changed. 

This test is designed to test control flow of a low 

performance system.  

 

2.1.2 GH09-B.2- Glue logic 

This design is composed of three simple state machines, and 

each state machine changes its value according to the 

commands on a 9-bit bus. The command bus can set each 

state machine to fast, slow or off modes. This test is 

designed to test control flow type processing by combining 

both low and high performance. 

 

2.1.3 GH09.B.3 – Encryption 

This design is an encryption algorithm based on Advanced 

Encryption Standard (AES) [20]. A 128-bit cypher is used 

with a 128-bit cryptographic key and 128-bit data blocks. 

Input and output data is divided to 16-bit blocks. Input data 

transmission is controlled by a simple handshaking protocol 

and the output is set to be ready to read by a one bit clock 

high pulse. This test is designed to test data processing of 

high performance systems. 

 

2.1.4 GH09.B.4 - Data compression 

This design performs data compression using the Lempel-

Ziv-Welch (LZW) lossless data compression algorithm. The 

design processes a block of 8-bit inputs and outputs a 

compressed version of that block. The design uses 4k of 

symbols in the code book, which lead to 12-bit output word. 

The input is controlled with a simple 2-bit handshaking 

protocol. This test is designed to test memory orientated 

high throughput systems.    

 

2.1.5 GH09.B.5 - Bridge chip 

This design implements a protocol conversion between a 

serial bus and a parallel bus. The bridge is a master 

controlling the serial bus of a slave device and at the same 

time the bridge is a slave in the parallel bus. The parallel bus 

is Wishbone direct bus. This test is designed to test a high 

throughput data oriented system which transfers serial and 

parallel data. 

   

2.1.6 GH09.B.6 - 2D convolution 

This design is a 2-dimensional convolution core where a 

constant 5×5 matrix is convolved with a 400×400 data 

matrix, which is entered from an external 16-bit interface 

controlled by a simple 2-bit handshaking protocol. Matrices 

are defined in terms of signed fixed point numbers of the 

         <event> 

 <time>5500ns</time> 

 <resource> 

  <name>bus</name> 

   <value0>00000011</value0> 

 </resource> 

</event> 

<event> 

  <time>1000000ns</time> 

 <resource> 

  <name>spi</name> 

  <value0>10100000000000 

                           0011111111</value0> 

 </resource> 

</event> 

 
Figure 1- Input stimulus in XML format 
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form of 8 bits presenting the integer part and eight bits 

presenting the fractional part. This test is designed to test 

high throughput, complex arithmetic and data orientated 

systems 

 

3. TEST BENCH GENERATION 

 
In this section, we describe the principal structure of the test 

bench for power measurements based on the Groundhog 

2009  benchmarks.  

 The test bench infrastructure is designed to feed the 

input to the GH09 implementation on a selected device and 

verify the output of the system.  The desired input data is 

transferred to the memory of the test bench, from which it is 

read and output to the system. The input to the system can 

be for example, continuously sampled and the sampling 

must be done at a frequency higher, preferred multiple 

values higher, of the system frequency to ensure correct 

input stimulus. This method consumes a lot of memory in 

the test bench and since the GH09 stimulus contains the 

time when certain events should happen starting from the 

beginning of the stimulus. Now the test bench can calculate 

time, the time calculation is done in the test bench clock 

cycles, and sample new data for the system when the time of 

the event occurs, i.e., the memory needs to store time values 

and event values. We parsed the XML-stimuli to two vector 

memories as an event value and event time memory, shown 

in figure 2. In special cases such as block or serial 

transmission events an extra memory is created. In the event 

value and time memory each event is stored to individual 

lines in the memory; if a special event is triggered the 

memory contains an extra slot to notify that the next 

stimulus is going to be loaded from the special memory. The 

golden model reference memories are generated in a similar 

manor.  

 The finite state machine controlling the reading and 

outputting of the values from the memories contains five 

states as illustrated by the state diagram shown in Figure 3. 

The first state “reset” sets the DUT reset in the active state 

but even in this reset state the clocks are running. When 

signal “start count” is active, which is externally set either 

from a pushbutton of the test bench device or a signal from 

a measurement device as the state machine starts to count 

cycles and initial values are loaded to the DUT and first 

values from the time and the value memory are loaded to the 

test bench. The counting of the time happens in “count” 

state where the clock cycle counter is increased by one in 

each clock cycle. When the cycle count is same or greater as 

the value in the time memory the current event is triggered 

and state machine goes to “load” state, i.e., the current bit 

vector loaded from the value memory is fed to the output 

and new vectors are loaded from the time and value 

memories. This is repeated until the memories run out of 

elements and the “stop” signal is activated to inform an 

external measurement device that end of the measurement is 

reached, i.e., the state machine goes to “end” state. When 

low active reset signal (“rst_n”) is activated the state 

machine immediately goes to “reset” state and the system 

will start over. 

 The structure of the test bench is presented in figure 4, 

where stimulus memories are connected to the state 

machine, presented at fig. 2 and fig 3, and reference 

memories (golden model) are connected to output 

verification.  When the design case requires an extra 

memory, i.e. data for the sequential stimulus, the extra 

memory is connected to the state machine. The output 

verification indicates whether output of the DUT is correct.  

A Phase Locked Loop(PLL) is used to generate the clock 

for the test bench, which is required to be faster than the 

clocks fed to the DUT, preferable multiple frequencies. If 

the PLL is not able to produce the clock frequency that is  

Figure 2Time and Value event memories 

 

Figure 3 State machine controlling the testbench 
 

64



 

 

required in the DUT, a clock divider is used in clock 

generation. Clock divider can be used only with low 

frequencies, i.e. under 1 MHz, to ensure correct operation. 

 Figure 4 shows the measurement system used for our 

power measurements. At the top of the figure is GroundHog 

2009 software suite, which outputs is workload and the 

design specification for selected benchmark. In the middle 

of the figure is the test vector generation, where the 

workload, i.e., input stimulus and reference output, is 

modified to vector format.  The input stimuli and output of 

the golden model are converted to a set of vectors and 

timestamps, i.e. vector memories, that are then read by an 

external FPGA board. We use Altera DE2 Development and 

Education FPGA board[13] as Stimulus generator and 

output verification device. This FPGA board is connected to 

the implementation of a design and feeds the input stimuli to 

the DUT so that power measurements can be made and the 

output from the design cane be verified against the golden 

model output. The GH09-suite includes sample environment 

descriptions, i.e. heart beat of the system and required data 

rate of serial transmission, which are followed in the test 

bench creation. These environment descriptions allow 

designs to target a range of mobile devices. 

 The shortest time between any consecutive events 

defines the timing accuracy of the stimulus generation 

system, if DUT cannot accept new data the test is stopped 

and an error message is displayed, i.e. the DUT is not able 

to accept data at the rate specified in the input stimulus. The 

latest arrival time of the output is not specified in the GH09, 

so only the correctness of the output is verified, it is left to 

user to verify that implemented system fulfills the speed 

requirements according to the environment variables. The 

design flow from the output of the GH09 suite, i.e., the 

stimulus in XML-format, to the actual mapping of the test 

vector generator is automated. The toolset; RTL-test 

benches, test vector generation, and generic design 

examples are available at [19].   

 

4. EXPERIMENTS 

In our measurements we use four commercially available 

FPGAs to illustrate how GH09 benchmark toolset can be 

used to benchmark reconfigurable architectures in terms of 

power consumption; in addition, we compare benchmark 

results for a microcontroller. For our experiments, we 

selected FPGAs, which have been design for low power; 

SiliconBlue’s ICE65L04 and ICE65L08 [9], Actel’s 

AGL600 [10], Lattice MachXO2 1200 [11], and for 

software implementation we have used a microcontroller  

 
 

Figure 5 Measurement system 

Figure 4 Structure of the testbench  
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Table 1 Resources available on the FPGAs 

 

based system Cypress’ PSoC [12]. For the each FPGA 

circuits, we map the basic RTL implementations of the 

GH09 benchmarks and measure the  power consumption for 

a particular workload. Unfortunately the available Lattice 

chip is too small for GH09.B.3 benchmark case. For the 

microcontroller, we present GH09.B.3 benchmark case. We 

also present five benchmark cases on the Lattice MachXO2 

chip using available advanced methods for low power 

designing to illustrate how much power can be saved with 

low power features included in a chip. 

 The modified stimulus is loaded to Stimulus generator 

together with the test bench for the case in hand. From the 

specifications of the selected case, the user can select a 

design from a basic VHDL RTL library or create their own 

implementation according to the specifications. The basic 

implementations are created to help the user to become 

familiar with the GH09 suite and to have a reference design 

for each case. The RTL implementation of the case is 

mapped to the DUT of the selected architecture.  We use the 

National Instruments PXI-1033 chassis [14] with PXI-4130 

voltage source [15] and TB-2709 Sampling DAQ [16]. This 

power measurement system feeds the core voltage to the 

DUT and measures the core voltage and current drawn by 

the DUT, the voltage is kept stable by sensing it in order to 

avoid a voltage drop when more current is required. 

 Table 1 provides a brief overview of the FPGAs 

measured; the first column describes the FPGA, and 

columns two, three and four shows the size of the FPGA, 

available RAM-memory and the number of the I/O pins. 

The size of the FPGA is combined number of Look up 

tables (LUT) and flip flops(FF), this number is not directly 

comparable, since architectures uses different sized LUTs 

and FF configurations. The numbers are taken from the 

datasheets of each vendor. 

 Following tables, 2-8 present average power dissipation 

of the GH09 designs with basic RTL, in each case the 

default parameters for the generation of the workload are 

used. The parameters effects to the stimuli are described in 

detail in [8], each table contains average power, resource 

usage, operational voltage and operating frequency, is some 

resource is a constant it’s notified in the caption of the table. 

 Table 2 and 3 shows the average power dissipation of 

GH09.B.1 with three FGPA boards. The table 2 presents 

Table 2. Power consumption of 7x8 Keypad of GH09.B.1 with 

32 MHz clock frequency and 1.2V supply voltage. 

  

 

 

 

 

 
Table 3. Power consumption of GPIO of GH09.B.1 with 

32MHz clock frequency and 1.2V supply voltage. 

 

 

 

 

 
Table 4. Power consumption of GH09.B.2 with 32MHz clock 

frequency and 1.2V supply voltage. 

 

 

 

 

 
 

Table 5. Power consumption of GH09.B.3. 

 
power consumption for a 7x8 keypad, where 15 of the 16 

available GPIOs are operating as keypad controller. The 

required response time is 50 ms which is equivalent to 20 

key-stokes in a second.  In table 3 a workload for the GPIO 

controller is used where 8 ports are used as an input and 8 

ports as an output.  

 Table 4 present the average power consumption of the 

GH09.B.2 with three FGPAs. The result shows that with 

this design and current workload (default workload 0) the 

power dissipation has variance between devices compared 

to the earlier case. 

 Table 5 shows power consumption for the GH09.B.3 

with two FGPAs and microcontroller. The AGL600 was 

unable to run the test with required 10MHz speed with 

operational voltage of 1.2V, the critical path of the device 

with 1.5V sufficient. PSOC-3 uses 3.3V operational voltage 

and the internal clock frequency of the microcontroller is 

32MHz, with lower frequency the system is not able to 

FPGA LUT/FF Memory 

[bits] 

I/O Pins 

AGL600 27.600 108k 235 

iCE65L04 7,040 80k 176 

iCE65L08 15,378 128k 222 

XO2-1200 2,560 64k 108 

FPGA/ 

Controller 

Oper. 

Freq. 

[MHz] 

VCC 

[V] 

Resource 

[%] 

PAVG 

[mW] 

AGL600 10  1.5 86 19.56 

iCE65L08 10 1.2 47 13.13 

PSOC-3 32 3.3 - 62.7 

FPGA Resource [%] PAVG [mW] 

AGL600 10 3.54 

iCE65L04 28 1.8 

XO2-1200 63 1.2 

FPGA Resource [%] PAVG [mW] 

AGL600 10 3.55 

iCE65L04 28 1.82 

XO2-1200 63 1.2 

FPGA Resource 

[%] 

PAVG [mW] 

AGL600 1 1.08 

iCE65L04 4 1.7 

XO2-1200 5 0.79 
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calculate the AES with the speed workload requires. The 

test design to the PSOC-3 is written with C. As excepted the 

microcontroller requires the most power, in this case almost 

five times more compared to the iCE65L08. 

 Table 6 presents the power consumption of the 

GH09.B.4 generic RTL-design. The operational voltage of 

the AGL600 is required to set to 1.5 V. Here we find 

significant differences in the power dissipation, which may 

be explained by the fact that the memories of the AGL600 

are less power efficient. The memory consumption of the 

devices differs since the size of the codebook is set to 

maximally fit to the device. The codebook width is not 

defined in the GH09-suite, but the code size has an effect on 

the compression ratio and the compression results, since the 

code words are more limited, this is a limitation of the basic 

implementation, it waste the memory and it can be easily 

optimized. The memory usage column describes how many 

bits of RAM are used and how much of the ram available 

ram blocks are used.  

 Table 7 provides power dissipation of the GH09.B.5 

with three FPGAs. To show the effect of the frequency we 

added a test with different clock frequency on the XO2 

device. The power scales nearly linearly as expected.  

 Table 8 shows power consumption for the GH09.B.6 

with four FGPAs. The operational voltage of the AGL600 is 

required to set to 1.5 V instead of the 1.2V as the rest of the 

devices. In here the XO2 takes surprisingly high power, 

clock tree of the system draws the most of the power. 

 In the Table 9, we show the power consumption of 

various power optimized versions of the each GH09 test 

case with Lattice Mach-XO2. In each design the clock 

muxes are inserted in the clock tree to control the 

distribution of the available clocks. Clocks are also 

internally disabled when specific inputs have no activity. 

The clock management gives improvements from 38% to 

1150%. The improvement of the GH09.B.6 in this particular 

case when device is performing 2D-convolution operation, 

it consumes nearly 420 µW and when the clocks are 

disables power consumption is 70 µW, giving average 

consumption of 82 µW. The improvement of the GH09.B.1 

is also significant, the result is average of the both 

workloads presented previously, with the 8x7 keypad the 

savings are bigger, since the input rate of 20 key-stokes in 

second makes efficient idling possible. 

 As an additional notice the results provided here is not 

general comparison between particular FPGAs, but a means 

to show the differences between different architectures 

when used with different benchmark cases. Such a 

comparison could be done with designs optimized 

individually for specific device make use of the low power 

features in present in the device. Also the devices contains 

different amount of features, including for example PLLs 

and internal oscillators, which consume power in the 

measurements. Within this study with the basic  

Table 6. Power consumption of GH09.B.4 with 10MHz clock 

frequency.  

 

FPGA 

VCC 

[V] 

Resource 

[%] 

PAVG 

[mW] 

Memory 

[kbits]/[%] 

AGL600 1.5 1 9.23 98 / 100 

iCE65L04 1.2 10 0.63 65 / 80 

iCE65L08 1.2 7 1.19 98 / 100 

XO2-1200 1.2 17 0.46 49 / 86 

 
Table 7. Power consumption of GH09.B.5. with 1.2V supply 

voltage 

 

FPGA 

Oper.Freq  

[MHz] 

Resource 

[%] 

PAVG 

[mW] 

AGL600 10 1 1.76 

iCE65L04 10 3 0.49 

XO2-1200 10 5 0.31 

XO2-1200 32 5 0.91 

 
Table 8. Power consumption of GH09.B.6 with 10MHz clock 

frequency and 32kbit memory.  

 
Table 9. Power consumption of power optimized designs with 

Lattice Mach XO2-1200. 

 

implementations the extra features is turned off within a 

device if possible. 

 

5. CONCLUSION 

 

In this work, we used the GroundHog 2009 benchmarking 

suite targeting reconfigurable architectures in the mobile 

domain to measure power dissipation of four modern 

FPGAs and on microcontroller. We introduced a basic RTL 

 

FPGA 

VCC 

[V] 

Resource 

[%] 

PAVG 

[mW] 

Memory 

[%] 

AGL600 1.5 19 5.9 40 

iCE65L04 1.2 23 0.59 45 

iCE65L08 1.2 11 1.1 28 

XO2-1200 1.2 59 1.05 57 

 

Design 

Oper. 

Freq. 

[MHz] 

VCC 

[V] 

PAVG 

[mW] 

Impr. 

[%] 

GH09.B.1 32  1.2 0.14 ~750 

GH09.B.2 32  1.2 0.575 37.6 

GH09.B.4 10  1.2 0.28 64.3 

GH09.B.5 10  1.2 0.09 244.4 

GH09.B.6 10  1.2 0.08 ~1150  
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design library for the suite and created test bench 

infrastructure to make the GroundHog suite easy to use. We 

show how easy changes to the basic component can have 

huge effect on the power dissipation; this can be done with 

platform supporting power management, such as clock tree 

manipulation.  

 The basic RTL-library and test bench infrastructure is 

available in OpenCores repository located at:                              

http://opencores.org/project,groundhog2009_repository,dow

nloads 

 It is our hope to establish a community of researchers 

in this area. The contributions needed are improved 

synthesizable versions of the benchmarks for a range of 

architectures, and new research into reconfigurable 

architectures targeting this domain. 
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