

OSSIE/GNU RADIO GENERIC COMPONENT PERFORMANCE ANALYSIS

OVER DISTRIBUTED SYSTEMS

ABSTRACT

The OSSIE/GNU Radio Generic Component (GC),
demonstrated at SDR ‘10, integrates the OSSIE and GNU
Radio (GR) open source Software-Defined Radio (SDR)
platforms. The GC can encapsulate one or more GR blocks
in a flowgraph, and can reconfigure the encapsulated
flowgraph and GR block properties in near real-time. It can
run in a standalone mode for GR testing and can also run as
a component in an OSSIE waveform, interfacing the
encapsulated GR flowgraph with other OSSIE components.
Recent enhancements to the GC include use of Cython in the
processing core to accelerate execution over the initial
Python-only implementation and encapsulation of GR GUI
sinks (fftsink2, scopesink2, and waterfallsink2) in the
optional GC GUI. GC performance was benchmarked and
component resource use profiled in multi-node distributed
SDR waveform applications. The results show that using
GR components within the GC in a distributed environment
is comparable in latency to using analogous OSSIE
components. The Universal Software Radio Peripheral 2
(USRP2) was used in close conjunction with the GC for
analysis and evaluation.

1. INTRODUCTION

The OSSIE/GNU Radio Generic Component (GC)
demonstrated at SDR ‘10 combines both the granularity
provided by GNU Radio and the capability of distributed
applications provided by OSSIE. The GC also allows for the
reconfiguration of internal GR flowgraphs during runtime,
making the GC a powerful and flexible addition to the
OSSIE waveform development. To combine the two
platforms, the GC was originally written in Python alone
because GR flowgraphs can be created in Python and OSSIE
components can be implemented in Python. However,
Python is not the ideal language for use in the critical path of
a signal processing application due to the inherent slowness
of a scripting language. For that reason, the processing core
of the GC was re-written in Cython in hopes that the
overhead that comes with increased functionality would be
mitigated. Cython allows for the declaration of C types as
well as using C-extensions in Python that allow Python
programs to run at speeds much closer to that of C++
programs. Smaller tests have shown this to be very

successful in terms of increasing the throughput of the GC to
speeds closer to its limit, which is an OSSIE component
implemented in Python that simply passes data without
processing [1]. To test the utility of the GC’s capabilities
against its overheard, two distributed waveforms were
created to compare standard OSSIE solutions to GC
solutions. Since OSSIE and GR are working in series, the
GC can only be as fast as the slowest of these two platforms
in any given environment. GR has been shown to be faster
than OSSIE in some environments and slower in others
[2][3][4]. The GC waveform capitalizes on the ability to
encapsulate many DSP blocks in a single GR flowgraph
within the GC as opposed to the OSSIE waveform, which
contains numerous OSSIE components to accomplish the
same task.

2. METHODS

The GC was tested on Virgnia Tech’s Cognitive Radio
Network Testbed (CORNET) using two nodes, each
equipped with an USRP2. Each node has a Quad Core
Xenon E5506 that runs at 2.13 GHz and holds 12 GB of
RAM. The nodes communicate with a gigabit switch and the
USRP2 with gigabit ethernet. Timing components were
inserted into the waveforms to record timestamp and
latency. A waveform was created in OSSIE’s Eclipse-based
waveform developer that was composed of a USRP_
Commander, timing component, two GC’s in series, and a
final timing component. This waveform was distributed
across two nodes on CORNET with the first node consisting
of the USRP_Commander, timing component, a GC, and the
final timing component. The second node consisted of a GC
only (Figure 1). Note that the USRP_ Commander is not
connected to the first component because the USRP2 logical
device (not shown) is connected to that component and also

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

8

Figure 1, GC waveform

Figure 2, OSSIE waveform

connected to the physical USRP2. The USRP_Commander
is connected to this logical device. This is the case for all of
the following waveforms.

Another waveform was created in the same way for the
purpose of comparison which consisted of a
USRP_Commander, timing component, amplifier,
decimator, automatic gain control, WFM demodulator,
another decimator, and another timing component. The node
was also distributed across two nodes with the first node
containing the USRP_Commander, timing component, and
amplifier. The second node contained the decimator,
automatic gain control, WFMDemodulator, another
decimator, and timing component (Figure 2).

These two waveforms both act as wide-band FM receivers,
but how the signal is demodulated in both waveforms is
different. This is to be expected since the first waveform
uses the GR Digital Signal Processing (DSP) libraries and
the second uses OSSIE components. The timing component
mentioned in these waveforms is not part of the OSSIE 0.8.2
release and was created specifically for this experiment to
measure latency. These components pass all data and output
the time in UTC according to the system clock. For this
reason, the two timing components had to be deployed on
the same node. Although the overheads added by these
timing components were not computed, they are consistent
between the two waveforms and do not obfuscate the
comparison. Two additional waveforms were created for
comparison which were deployed in the same way as the GC
waveform. The first of these two waveforms did not use the
Cython implementation of the GC (Figure 3).

Figure 3, Pass_data waveform

 Figure 4. GC waveform with no Cython

The second of these two waveforms replaced the two GC’s
with python pass\textunderscore data components (Figure
4).

Each of these waveforms were installed and started on two
nodes and latency measurements were taken from between
the two timing components. The processing blocks between
timing components encase all of the DSP necessary to
demodulate an FM signal. Each of these waveforms received
100 packets of size 2048 and OSSIE data type
complexShort.

3. RESULTS

The results are summarized in the following table:

Waveform OSSIE

Waveform
Pass Data
Waveform

GC
Waveform

GC (No
Cython)
Waveform

Average
latency
[ms]

1.495 .933 4.296 160.06

9

4. DISCUSSION

Comparing the C++ based OSSIE waveform and the Python
based GC waveform reveals that indeed, there is a
significant amount of overhead even though the GC can
encapsulate many DSP blocks. It is also likely that this more
pronounced than what can be seen here since the timing
components have added some additional overhead. The
difference between the GC waveform and the Python based
pass data waveform shows that the GC is still about three
times slower than the theoretical lower bound. That limit
does not account for the processing done by the GR
components, so the limit on the GC's throughput is likely to
be higher. Since the entire GR infrastructure was invoked
by the GC within an OSSIE component, and it was shown
that GR can be slower than OSSIE under certain cases, this
discrepancy in latency is not surprising. Comparing the
Cython GC waveform with the with its non-Cython
implementation shows the significant increase in throughput
as a result of implementing the critical DSP path of the GC
in Cython.

These results indicate possible performance improvements if
the GC were re-implemented in C++ instead of Python.
Taking this approach would likely increase the throughput
significantly due to the removal of slow scripting code. If
this were done, the GC would likely have latencies similar to
C++ components and would likely offer a slightly more
flexible alternative to many OSSIE waveforms. The GC
would still suffer a slight overhead because the Python
interpreter would still be necessary to run the core of the
GC.

Fundamentally, the GC serves the purpose of allowing the
user to pick from any ordered set of pre-compiled DSP
blocks that is offered by GR. To make a truly generic
component, it might be much flexible to have a library of
DSP modules that are invoked in the program in the order
the user wishes. In this way, a library could be created from
any platform by extracting the signal processing code. If
done correctly, this could be implemented in any C++ based
platform, so the component would not just be processing
generic, but platform generic too. This would require
something completely different from the current GC
implementation, but the overarching idea is fundamentally
the same.

5. CONCLUSION

Encapsulation of GR flowgraphs within the GC affords
increased flexibility and granularity of DSP. This increased
flexibility comes at the price of increased latency. By
implementing the processing core of the GC in Cython, the
GC’s throughput has increased dramatically. The GC in its
current form will allow about a fourth of the same
throughput that can be achieved by an OSSIE waveform
alone. This may be a hindrance to some applications, but for
others the capability for automated run-time compositional
reconfiguration of a waveform under control of a cognitive
engine will be worth the price of decreased throughput.

10. REFERENCES

[1] D. Chen, G. Vanhoy, M. Beaufait, and C. Dietrich,

“OSSIE/GNU Radio Generic Component.” New York, NY:
Wireless Telecommunications Symposium (WTS 2011), April
2011

[2] E. Paone, “Open-source SCA Implementation-Embedded and
Software

[3] Communication Architecture, OSSIE and SCA Waveform
Development,”

[4] Master’s thesis, Royal Institute of Technology (KTH),
Stockholm, Sweden, February 2010

[5] G. Abgrall, F. L. Roy, J.-P. Delahaye, J.-P. Diguet, and G.
Gogniat, “A comparative Study of Two Software Defined
Radio Platforms.” Washington, D.C.: SDR ’08 Technical
Conference and Product Exposition, October 2008

[6] P. Navarro, . R. Villing, and R. Farrell, “Software-Defined
Radio Architectures Evaluation,.” Washington, D.C.: SDR
’08 Technical Conference and Product Exposition, October
2008

10

	OSSIE/GNU Radio generic component performance analysis over distributed systems
	Abstract
	1. Introduction
	2. MEthods
	3. RESULTS
	4. DISCUSSION
	5. CONCLUSION
	10. References

