

POWER CONSUMPTION BENCHMARKING FOR RECONFIGURABLE

PLATFORMS

Teemu Pitkänen (Tampere University of Technology, Finland; teemu.pitkanen@tut.fi);

Peter Jamieson (Miami University, Oxford, OH, USA; jamiespa@muohio.edu);

Tobias Becker (Imperial College, London, UK; tobias.becker04@imperial.ac.uk);

Sami Moisio (Nokia Devices R&D, Tampere, Finland; sami.moisio@nokia.com);

Jarmo Takala (Tampere University of Technology, Finland; jarmo.takala@tut.fi)

ABSTRACT

Software Defined Radios (SDR) wideband mobile terminal

must be capable of high-speed data processing while

consuming low power and keeping the design and

manufacturing costs as low as possible. In order to make

SDR nodes mobile, the power consumption is the major

design issue. Analysis of power consumption for the various

implementations is challenging, since each implementation

contains its own benchmarking tools and thus the results are

not comparable. In this paper, we use the GroundHog 2009

benchmark suite, designed to be platform independent, to

evaluate power dissipation of four modern FPGAs and one

microcontroller. We also introduce generic RTL library for

the GroundHog design cases and test bench infra-structure

to make the toolset usage easy. In addition, we show how

much power can be saved by using clock management,

available on the one of the FGPA-boards. The power

savings range from 38% to 1150%.

1. INTRODUCTION

Software Defined Radios (SDR) call for efficient and highly

configurable platforms that allow implementation of the

rapidly evolving 3G and 4G digital wireless communication

standards. There are various implementation technologies,

which can be used for such a purpose depending on the

requirements of the application at hand, e.g., Field

Programmable Gate Arrays (FPGA), Digital Signal

Processors (DSP), General-Purpose Processors (GPP),

Application-Specific Integrated Circuits (ASIC), or a

combination of these.

 FPGAs are often used as SDR platform, since an SDR

wideband mobile terminal must be capable of high-speed

data processing, low power consumption and low design

and manufacturing cost [1, 17]. Especially in the mobile

domain the power consumption or average energy

dissipation is a critical as it determines the battery life. Also

the peak current has to be considered for thermal aspects.

The analysis of the power consumption of different

implementation methods is challenging as there is large

variation between different implementations even on a one

particular target technology, i.e., an FPGA can be designed

for low leakage current but a poorly designed configuration

may consume more power than a good design on an FPGA

with higher leakage current.

 For fair measurement of the power consumption for

different implementation methods, not only the application

but also the input of the system should remain the same.

However the input of the system should not be one fixed set

of inputs, since one might optimize the measured system for

a specific case and the results are not realistic.

 Evaluation and benchmarking power consumption of

the reconfigurable architectures has been achieved by using

existing benchmarks [7], such as MCNC [2], or by modeling

power consumption using circuit models and in house

designs. Much of the previous work [3, 4, 5], allows power

measurements on reconfigurable architectures, but they do

not realistically model modern applications on these

devices. As for earlier benchmarks, such as MCNC, there

are no input stimuli and they are implemented in low level

design descriptions.

 The GroundHog 2009 (GH09) benchmark suite has

been developed to fill the gap between existing benchmarks

and requirements of the mobile domain applications in the

near and far future [7]. The GH09 includes seven designs;

one targeting fine-grained FPGA fabrics and six designs that

are specified at a high level, allowing them to target a range

of reconfigurable technologies. The designs in the GH09

can be stimulated with synthetically generated input and

verified against the golden model output created by a tool

included in the suite. The suite can be used as a tool to

evaluate the power consumption of the different target

technologies and it can also give guidance for selecting a

suitable method for low power implementation.

 In this paper, we use GH09 benchmarks to evaluate

power dissipation of four modern FPGAs targeting the

mobile domain and one microcontroller. We introduce basic

HDL-implementations and test bench infrastructure for the

power measurements for each of the high level designs of

the GH09. The basic HDL-designs and test bench

infrastructure is made publicly available [19] and hopefully

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

61

mailto:jamiespa@muohio.edu

will made the starting to use the GH09 suite more

interesting.

 The reminder of this paper is organized as follows:

Section 2 describes our benchmark suite in details. Section 3

describes the mechanism to feed the input stimulus to the

Device Under Test (DUT) and the verification of the DUT.

Section 4 describes the measurements carried out for four

low power FPGAs and one microcontroller. Finally, Section

5 concludes the paper.

2. GROUNDHOG BENCHMARKS AND TOOLS

At present, most researchers agree that it will be challenging

for reconfigurable architectures to be included in mass-

market mobile devices even with the benefits of flexibility

of design. The limiting factors for this adoption are power

consumption, cost, and lack of advanced low power modes

where power is reduced significantly when the device is

idling or performing low throughput tasks. GroundHog

2009 is a benchmarking suite that targets reconfigurable

architectures in the mobile computation domain with the

goal of providing the means to evaluate current and future

technologies for low power and increase innovation in this

field so that someday reconfigurable architectures are

adopted. There are a number of challenges in creating this

benchmark to meet the following goals:

 Collecting realistic (open access) designs that are

used in current and future mobile devices.

 Allow the benchmarks to be mapped to the wide

range of reconfigurable architectures, which

include FPGAs, CPLDs, coarse-grain architectures,

multicore systems, and even microprocessors.

 Stimulate the designs with actions a system will

likely perform in current mobile devices and future

mobile devices.

 Create a methodology in which the wide variety of

technologies in mobile devices can be described so

that architectures can be designed to target these

specific instances.

 Prevent system or tool optimizations for a specific

benchmark, while still encouraging innovation.

GroundHog 2009 has been created as the first attempt to

satisfy these challenges. There are four main elements of the

benchmark suite that make-up this innovative framework

and address many of the challenges described. They are:

(1) providing high-level design descriptions;

(2) providing synthetically generated, parametrizable

input stimuli;

(3) allowing the environment to be uniquely specified;

and

(4) allowing early baseline fabric analysis of fine-

grained FPGAs.

 Fabric analysis is included in the benchmark suite to

allow our community to quickly evaluate the power

consumption of fine-grained FPGAs.

2.1. GroundHog 2009 Bencmark Suite

GroundHog 2009 (GH09) consists of seven designs and

accompanying infrastructure that allows a benchmark user

to create input stimuli for these designs and to verify their

implementations against a golden model. The seven designs

are:

 GH09.B.0 - Fabric analysis

 GH09.B.1 - Port expander and keypad controller

 GH09.B.2 - Glue logic

 GH09.B.3 - Encryption

 GH09.B.4 - Data compression

 GH09.B.5 - Bridge chip

 GH09.B.6 - 2D convolution

Designs starting from GH09.B.1 are described in details in

chapters: 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5 and 2.1.6.

 GH9.B.0 is an application-independent test case

designed to evaluate the basic characteristics of the FGPA

fabric, the other cases are functional descriptions of

applications, which are representative for mobile systems.

The GH09.B.0 is left out of the scope of this evaluation;

detailed description of this case can be found [18]. These

designs were selected because they are simple, but represent

the properties of a range of possible designs. For example,

the 2D convolution design evaluates how a technology can

efficiently implement arithmetic operations. On the other

hand, the data compression design evaluates how a

technology can efficiently implement memories that are

accessed in pseudo random fashion.

 These benchmarks were chosen by studying at existing

mobile phones and questioning what might a reconfigurable

device be useful for and what are common functions within

a communicating mobile device. Both the port expander and

bridge chip are included because these designs address a

common problem within mobile devices by expanding the

number of pins. This is the case since the baseband

processor is pin limited. Similarly, glue logic implements

pin expansion as well as other types of custom connectivity

potentially needed for a mobile device. The 2D convolution

design was included as a common algorithm used in the

both digital radio transmission and reception, and it is also

used in many DSP applications including graphics

processing. Both encryption and data compression are

algorithms that might be used as hardware acceleration for

applications loaded onto the phone. They might also be

included as parts of the radio transmission depending on the

mobile device. For example, many military applications

require encryption hardware on the transmission path.

 In addition to the designs, we have also included open-

source software tools to aid the benchmark users in building

a measurement framework for their implementations. The

62

tools allow benchmark users to create input stimuli, in XML

format, to evaluate their solutions. These stimuli can be

created to model continuous throughput inputs as well as

intermittent stimuli that more closely model the on/off

activity within a mobile device. The stimuli is described as

an events and time stamps when event occurs. This is

illustrated in the figure 1: the event is described with

<event> and <time> describes the time when event is

occurs, <name> shows which object the event is concerning.

An object type is specified within the test design

specifications, i.e. serial, parallel or a block of data.

<value> identifies an object inside the object and set the

value of the object. The XML file also contains information

about the design environment, the minimum acceptable

heartbeat of the system (the minimum time between events),

and serial data arrival. It can also contain conditions for the

design, i.e., when the system interrupts what actions the

system excepts from the “master” device.

 An included tool also provides a golden model

simulator to help benchmark users to verify correctness of

their implementations. In this way, benchmark users can

look at the software emulation of each of the six designs and

analyze the behavior of their implementation for a given

input stimulus. This helps in both understanding the

expected behavior of a benchmark design and verifying

whether the implemented version on a reconfigurable

architecture is behaving correctly. The golden model output

is also provided in XML. The reference output specifies the

earliest time when the output data could arrive, but the latest

arrival time is not specified. The data arrival is left to be

specified in the environment variables.

As for the input stimuli the time stamp only defines the time

when data is ought to be received, not the time when it

should be processed. Detailed description of the designs,

stimulus generation and environments can be found in our

earlier work [7,8,18].

2.1.1 GH09.B.1- Port expander and keypad controller

The design is used to expand the number of ports of the

master device and at the same time to work as a keypad

controller. The design has a serial data input and output and

16 general-purpose IO ports, which can be programmed

through a serial interface. The design contains two interrupt

signals, which is used to notify the master device if a key is

pressed on the keypad or a general-purpose IO has changed.

This test is designed to test control flow of a low

performance system.

2.1.2 GH09-B.2- Glue logic

This design is composed of three simple state machines, and

each state machine changes its value according to the

commands on a 9-bit bus. The command bus can set each

state machine to fast, slow or off modes. This test is

designed to test control flow type processing by combining

both low and high performance.

2.1.3 GH09.B.3 – Encryption

This design is an encryption algorithm based on Advanced

Encryption Standard (AES) [20]. A 128-bit cypher is used

with a 128-bit cryptographic key and 128-bit data blocks.

Input and output data is divided to 16-bit blocks. Input data

transmission is controlled by a simple handshaking protocol

and the output is set to be ready to read by a one bit clock

high pulse. This test is designed to test data processing of

high performance systems.

2.1.4 GH09.B.4 - Data compression

This design performs data compression using the Lempel-

Ziv-Welch (LZW) lossless data compression algorithm. The

design processes a block of 8-bit inputs and outputs a

compressed version of that block. The design uses 4k of

symbols in the code book, which lead to 12-bit output word.

The input is controlled with a simple 2-bit handshaking

protocol. This test is designed to test memory orientated

high throughput systems.

2.1.5 GH09.B.5 - Bridge chip

This design implements a protocol conversion between a

serial bus and a parallel bus. The bridge is a master

controlling the serial bus of a slave device and at the same

time the bridge is a slave in the parallel bus. The parallel bus

is Wishbone direct bus. This test is designed to test a high

throughput data oriented system which transfers serial and

parallel data.

2.1.6 GH09.B.6 - 2D convolution

This design is a 2-dimensional convolution core where a

constant 5×5 matrix is convolved with a 400×400 data

matrix, which is entered from an external 16-bit interface

controlled by a simple 2-bit handshaking protocol. Matrices

are defined in terms of signed fixed point numbers of the

 <event>

 <time>5500ns</time>

 <resource>

 <name>bus</name>

 <value0>00000011</value0>

 </resource>

</event>

<event>

 <time>1000000ns</time>

 <resource>

 <name>spi</name>

 <value0>10100000000000

 0011111111</value0>

 </resource>

</event>

Figure 1- Input stimulus in XML format

63

form of 8 bits presenting the integer part and eight bits

presenting the fractional part. This test is designed to test

high throughput, complex arithmetic and data orientated

systems

3. TEST BENCH GENERATION

In this section, we describe the principal structure of the test

bench for power measurements based on the Groundhog

2009 benchmarks.

 The test bench infrastructure is designed to feed the

input to the GH09 implementation on a selected device and

verify the output of the system. The desired input data is

transferred to the memory of the test bench, from which it is

read and output to the system. The input to the system can

be for example, continuously sampled and the sampling

must be done at a frequency higher, preferred multiple

values higher, of the system frequency to ensure correct

input stimulus. This method consumes a lot of memory in

the test bench and since the GH09 stimulus contains the

time when certain events should happen starting from the

beginning of the stimulus. Now the test bench can calculate

time, the time calculation is done in the test bench clock

cycles, and sample new data for the system when the time of

the event occurs, i.e., the memory needs to store time values

and event values. We parsed the XML-stimuli to two vector

memories as an event value and event time memory, shown

in figure 2. In special cases such as block or serial

transmission events an extra memory is created. In the event

value and time memory each event is stored to individual

lines in the memory; if a special event is triggered the

memory contains an extra slot to notify that the next

stimulus is going to be loaded from the special memory. The

golden model reference memories are generated in a similar

manor.

 The finite state machine controlling the reading and

outputting of the values from the memories contains five

states as illustrated by the state diagram shown in Figure 3.

The first state “reset” sets the DUT reset in the active state

but even in this reset state the clocks are running. When

signal “start count” is active, which is externally set either

from a pushbutton of the test bench device or a signal from

a measurement device as the state machine starts to count

cycles and initial values are loaded to the DUT and first

values from the time and the value memory are loaded to the

test bench. The counting of the time happens in “count”

state where the clock cycle counter is increased by one in

each clock cycle. When the cycle count is same or greater as

the value in the time memory the current event is triggered

and state machine goes to “load” state, i.e., the current bit

vector loaded from the value memory is fed to the output

and new vectors are loaded from the time and value

memories. This is repeated until the memories run out of

elements and the “stop” signal is activated to inform an

external measurement device that end of the measurement is

reached, i.e., the state machine goes to “end” state. When

low active reset signal (“rst_n”) is activated the state

machine immediately goes to “reset” state and the system

will start over.

 The structure of the test bench is presented in figure 4,

where stimulus memories are connected to the state

machine, presented at fig. 2 and fig 3, and reference

memories (golden model) are connected to output

verification. When the design case requires an extra

memory, i.e. data for the sequential stimulus, the extra

memory is connected to the state machine. The output

verification indicates whether output of the DUT is correct.

A Phase Locked Loop(PLL) is used to generate the clock

for the test bench, which is required to be faster than the

clocks fed to the DUT, preferable multiple frequencies. If

the PLL is not able to produce the clock frequency that is

Figure 2Time and Value event memories

Figure 3 State machine controlling the testbench

64

required in the DUT, a clock divider is used in clock

generation. Clock divider can be used only with low

frequencies, i.e. under 1 MHz, to ensure correct operation.

 Figure 4 shows the measurement system used for our

power measurements. At the top of the figure is GroundHog

2009 software suite, which outputs is workload and the

design specification for selected benchmark. In the middle

of the figure is the test vector generation, where the

workload, i.e., input stimulus and reference output, is

modified to vector format. The input stimuli and output of

the golden model are converted to a set of vectors and

timestamps, i.e. vector memories, that are then read by an

external FPGA board. We use Altera DE2 Development and

Education FPGA board[13] as Stimulus generator and

output verification device. This FPGA board is connected to

the implementation of a design and feeds the input stimuli to

the DUT so that power measurements can be made and the

output from the design cane be verified against the golden

model output. The GH09-suite includes sample environment

descriptions, i.e. heart beat of the system and required data

rate of serial transmission, which are followed in the test

bench creation. These environment descriptions allow

designs to target a range of mobile devices.

 The shortest time between any consecutive events

defines the timing accuracy of the stimulus generation

system, if DUT cannot accept new data the test is stopped

and an error message is displayed, i.e. the DUT is not able

to accept data at the rate specified in the input stimulus. The

latest arrival time of the output is not specified in the GH09,

so only the correctness of the output is verified, it is left to

user to verify that implemented system fulfills the speed

requirements according to the environment variables. The

design flow from the output of the GH09 suite, i.e., the

stimulus in XML-format, to the actual mapping of the test

vector generator is automated. The toolset; RTL-test

benches, test vector generation, and generic design

examples are available at [19].

4. EXPERIMENTS

In our measurements we use four commercially available

FPGAs to illustrate how GH09 benchmark toolset can be

used to benchmark reconfigurable architectures in terms of

power consumption; in addition, we compare benchmark

results for a microcontroller. For our experiments, we

selected FPGAs, which have been design for low power;

SiliconBlue’s ICE65L04 and ICE65L08 [9], Actel’s

AGL600 [10], Lattice MachXO2 1200 [11], and for

software implementation we have used a microcontroller

Figure 5 Measurement system

Figure 4 Structure of the testbench

65

Table 1 Resources available on the FPGAs

based system Cypress’ PSoC [12]. For the each FPGA

circuits, we map the basic RTL implementations of the

GH09 benchmarks and measure the power consumption for

a particular workload. Unfortunately the available Lattice

chip is too small for GH09.B.3 benchmark case. For the

microcontroller, we present GH09.B.3 benchmark case. We

also present five benchmark cases on the Lattice MachXO2

chip using available advanced methods for low power

designing to illustrate how much power can be saved with

low power features included in a chip.

 The modified stimulus is loaded to Stimulus generator

together with the test bench for the case in hand. From the

specifications of the selected case, the user can select a

design from a basic VHDL RTL library or create their own

implementation according to the specifications. The basic

implementations are created to help the user to become

familiar with the GH09 suite and to have a reference design

for each case. The RTL implementation of the case is

mapped to the DUT of the selected architecture. We use the

National Instruments PXI-1033 chassis [14] with PXI-4130

voltage source [15] and TB-2709 Sampling DAQ [16]. This

power measurement system feeds the core voltage to the

DUT and measures the core voltage and current drawn by

the DUT, the voltage is kept stable by sensing it in order to

avoid a voltage drop when more current is required.

 Table 1 provides a brief overview of the FPGAs

measured; the first column describes the FPGA, and

columns two, three and four shows the size of the FPGA,

available RAM-memory and the number of the I/O pins.

The size of the FPGA is combined number of Look up

tables (LUT) and flip flops(FF), this number is not directly

comparable, since architectures uses different sized LUTs

and FF configurations. The numbers are taken from the

datasheets of each vendor.

 Following tables, 2-8 present average power dissipation

of the GH09 designs with basic RTL, in each case the

default parameters for the generation of the workload are

used. The parameters effects to the stimuli are described in

detail in [8], each table contains average power, resource

usage, operational voltage and operating frequency, is some

resource is a constant it’s notified in the caption of the table.

 Table 2 and 3 shows the average power dissipation of

GH09.B.1 with three FGPA boards. The table 2 presents

Table 2. Power consumption of 7x8 Keypad of GH09.B.1 with

32 MHz clock frequency and 1.2V supply voltage.

Table 3. Power consumption of GPIO of GH09.B.1 with

32MHz clock frequency and 1.2V supply voltage.

Table 4. Power consumption of GH09.B.2 with 32MHz clock

frequency and 1.2V supply voltage.

Table 5. Power consumption of GH09.B.3.

power consumption for a 7x8 keypad, where 15 of the 16

available GPIOs are operating as keypad controller. The

required response time is 50 ms which is equivalent to 20

key-stokes in a second. In table 3 a workload for the GPIO

controller is used where 8 ports are used as an input and 8

ports as an output.

 Table 4 present the average power consumption of the

GH09.B.2 with three FGPAs. The result shows that with

this design and current workload (default workload 0) the

power dissipation has variance between devices compared

to the earlier case.

 Table 5 shows power consumption for the GH09.B.3

with two FGPAs and microcontroller. The AGL600 was

unable to run the test with required 10MHz speed with

operational voltage of 1.2V, the critical path of the device

with 1.5V sufficient. PSOC-3 uses 3.3V operational voltage

and the internal clock frequency of the microcontroller is

32MHz, with lower frequency the system is not able to

FPGA LUT/FF Memory

[bits]

I/O Pins

AGL600 27.600 108k 235

iCE65L04 7,040 80k 176

iCE65L08 15,378 128k 222

XO2-1200 2,560 64k 108

FPGA/

Controller

Oper.

Freq.

[MHz]

VCC

[V]

Resource

[%]

PAVG

[mW]

AGL600 10 1.5 86 19.56

iCE65L08 10 1.2 47 13.13

PSOC-3 32 3.3 - 62.7

FPGA Resource [%] PAVG [mW]

AGL600 10 3.54

iCE65L04 28 1.8

XO2-1200 63 1.2

FPGA Resource [%] PAVG [mW]

AGL600 10 3.55

iCE65L04 28 1.82

XO2-1200 63 1.2

FPGA Resource

[%]

PAVG [mW]

AGL600 1 1.08

iCE65L04 4 1.7

XO2-1200 5 0.79

66

calculate the AES with the speed workload requires. The

test design to the PSOC-3 is written with C. As excepted the

microcontroller requires the most power, in this case almost

five times more compared to the iCE65L08.

 Table 6 presents the power consumption of the

GH09.B.4 generic RTL-design. The operational voltage of

the AGL600 is required to set to 1.5 V. Here we find

significant differences in the power dissipation, which may

be explained by the fact that the memories of the AGL600

are less power efficient. The memory consumption of the

devices differs since the size of the codebook is set to

maximally fit to the device. The codebook width is not

defined in the GH09-suite, but the code size has an effect on

the compression ratio and the compression results, since the

code words are more limited, this is a limitation of the basic

implementation, it waste the memory and it can be easily

optimized. The memory usage column describes how many

bits of RAM are used and how much of the ram available

ram blocks are used.

 Table 7 provides power dissipation of the GH09.B.5

with three FPGAs. To show the effect of the frequency we

added a test with different clock frequency on the XO2

device. The power scales nearly linearly as expected.

 Table 8 shows power consumption for the GH09.B.6

with four FGPAs. The operational voltage of the AGL600 is

required to set to 1.5 V instead of the 1.2V as the rest of the

devices. In here the XO2 takes surprisingly high power,

clock tree of the system draws the most of the power.

 In the Table 9, we show the power consumption of

various power optimized versions of the each GH09 test

case with Lattice Mach-XO2. In each design the clock

muxes are inserted in the clock tree to control the

distribution of the available clocks. Clocks are also

internally disabled when specific inputs have no activity.

The clock management gives improvements from 38% to

1150%. The improvement of the GH09.B.6 in this particular

case when device is performing 2D-convolution operation,

it consumes nearly 420 µW and when the clocks are

disables power consumption is 70 µW, giving average

consumption of 82 µW. The improvement of the GH09.B.1

is also significant, the result is average of the both

workloads presented previously, with the 8x7 keypad the

savings are bigger, since the input rate of 20 key-stokes in

second makes efficient idling possible.

 As an additional notice the results provided here is not

general comparison between particular FPGAs, but a means

to show the differences between different architectures

when used with different benchmark cases. Such a

comparison could be done with designs optimized

individually for specific device make use of the low power

features in present in the device. Also the devices contains

different amount of features, including for example PLLs

and internal oscillators, which consume power in the

measurements. Within this study with the basic

Table 6. Power consumption of GH09.B.4 with 10MHz clock

frequency.

FPGA

VCC

[V]

Resource

[%]

PAVG

[mW]

Memory

[kbits]/[%]

AGL600 1.5 1 9.23 98 / 100

iCE65L04 1.2 10 0.63 65 / 80

iCE65L08 1.2 7 1.19 98 / 100

XO2-1200 1.2 17 0.46 49 / 86

Table 7. Power consumption of GH09.B.5. with 1.2V supply

voltage

FPGA

Oper.Freq

[MHz]

Resource

[%]

PAVG

[mW]

AGL600 10 1 1.76

iCE65L04 10 3 0.49

XO2-1200 10 5 0.31

XO2-1200 32 5 0.91

Table 8. Power consumption of GH09.B.6 with 10MHz clock

frequency and 32kbit memory.

Table 9. Power consumption of power optimized designs with

Lattice Mach XO2-1200.

implementations the extra features is turned off within a

device if possible.

5. CONCLUSION

In this work, we used the GroundHog 2009 benchmarking

suite targeting reconfigurable architectures in the mobile

domain to measure power dissipation of four modern

FPGAs and on microcontroller. We introduced a basic RTL

FPGA

VCC

[V]

Resource

[%]

PAVG

[mW]

Memory

[%]

AGL600 1.5 19 5.9 40

iCE65L04 1.2 23 0.59 45

iCE65L08 1.2 11 1.1 28

XO2-1200 1.2 59 1.05 57

Design

Oper.

Freq.

[MHz]

VCC

[V]

PAVG

[mW]

Impr.

[%]

GH09.B.1 32 1.2 0.14 ~750

GH09.B.2 32 1.2 0.575 37.6

GH09.B.4 10 1.2 0.28 64.3

GH09.B.5 10 1.2 0.09 244.4

GH09.B.6 10 1.2 0.08 ~1150

67

design library for the suite and created test bench

infrastructure to make the GroundHog suite easy to use. We

show how easy changes to the basic component can have

huge effect on the power dissipation; this can be done with

platform supporting power management, such as clock tree

manipulation.

 The basic RTL-library and test bench infrastructure is

available in OpenCores repository located at:

http://opencores.org/project,groundhog2009_repository,dow

nloads

 It is our hope to establish a community of researchers

in this area. The contributions needed are improved

synthesizable versions of the benchmarks for a range of

architectures, and new research into reconfigurable

architectures targeting this domain.

6. REFERENCES

[1] A. Abidi, “The Path to the Software-Defined Radio

Receiver”, IEEE Journal of Solid-State circuits, Vol. 42, No.
5, 2007

[2] S. Yang. “Logic Synthesis and Optimization Benchmarks”,
Version 3.0, 1991.

[3] K. Poon, A. Yan and S. Wilton. “A Flexible Power Model for
FPGAs”, FPL, pages 312–321, 2002.

[4] J. Anderson and F. Najm. “Power estimation techniques for
FPGAs”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 12(10):1015–1027, October 2004.

[5] K. O. Tinmaung, D. Howland and R. Tessier, “Power-aware
FPGA logic synthesis using binary decision diagrams”,
FPGA, pages 148–155, 2007

[6] T. Becker, P. Jamieson, W. Luk, P.Y.K. Cheung, and T.
Rissa., “Towards Benchmarking Energy Efficiency of
Reconfigurable Architectures”, 18th International Conference
on Field Programmable Logic and Applications (FPL'08),
2009 . Heidelberg, Germany

[7] P. Jamieson, T. Becker, W. Luk, P.Y.K. Cheung, T. Rissa and
T. Pitkänen. “Benchmarking Reconfigurable Architectures in
the Mobile Domain”, IEEE Symposium on Field-
Programmable Custom Computing Machines, 2009.

[8] P. Jamieson, T. Becker, P.Y.K. Cheung, W. Luk, T. Rissa and
T. Pitkänen, “Benchmarking and Evaluating Reconfigurable
Architectures in the Mobile Domain”, ACM Transactions
on Design Automation of Electronic Systems, vol. 15,
no. 2, 2010.

 [9] SiliconBlue. iCE DiCE: iCE65L04 Ultra Low-Power FPGA

Known Good Die, March 2009.

[10] Actel, Igloo Handbook, Jan 2008

[11] Lattice, Mach XO2: The do-it-All PLD for Low Density

Applications, 2011

[12] Cypress, PSoC 3: CY8C38 Family Data sheet, May 2011

[13] Altera DE2 Development and Education board user manual,

2006

[14] National Instruments, PXI-1033 Chassis, Datasheet, 2010

[15] National Instruments, PXI-4130 Power SMU, Datasheet,

2010

[16] National Instruments, TB-2709 Sampling DAQ, Datasheet,

2010

[17] K. Akabane, H. Shiba, M. Matsui, M. Umehira and K.

Uehara, “Performance Evaluation of Reconfigurable

Processor for SDR Mobile Terminals and SDR Base Station

using Autonomous Adaptive Control Technology”, ICICS,

pages 148-152, 2005

[18] T.Becker, P. Jamieson, P.Y.K Cheung and T. Rissa, ”Power

Characterization for Fine-Grain Reconfigurable Fabrics”,

International Journal of Reconfigurable Computing, vol. 2010

Article ID 787405, 9 pages, 2010.

[19] OpenCore, project GroundHog 2009, Downloads,

http://opencores.org/project,groundhog2009_repository,downl

oads

 [20] “Advanced Encryption Standard (AES)”, Federal

Information Processing Standards Publication 197,

November, 2001

.

[19] OpenCores, project groundhog 2009,

Downloads.

http://opencores.org/project,groundhog20

09_repository,downloads

68

