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ABSTRACT 
 
The OSSIE/GNU Radio Generic Component (GC), 
demonstrated at SDR ‘10,  integrates the OSSIE and GNU 
Radio (GR) open source Software-Defined Radio (SDR) 
platforms. The GC can encapsulate one or more GR blocks 
in a flowgraph, and can reconfigure the encapsulated 
flowgraph and GR block properties in near real-time.  It can 
run in a standalone mode for GR testing and can also run as 
a component in an OSSIE waveform, interfacing the 
encapsulated GR flowgraph with other OSSIE components.  
Recent enhancements to the GC include use of Cython in the 
processing core to accelerate execution over the initial 
Python-only implementation and encapsulation of GR GUI 
sinks (fftsink2, scopesink2, and waterfallsink2) in the 
optional GC GUI.  GC performance was benchmarked and 
component resource use profiled in multi-node distributed 
SDR waveform applications.  The results show that using 
GR components within the GC in a distributed environment 
is comparable in latency to using analogous OSSIE 
components.  The Universal Software Radio Peripheral 2 
(USRP2) was used in close conjunction with the GC for 
analysis and evaluation. 
 

1. INTRODUCTION 
 
The OSSIE/GNU Radio Generic Component (GC) 
demonstrated at SDR ‘10 combines both the granularity 
provided by GNU Radio and the capability of distributed 
applications provided by OSSIE. The GC also allows for the 
reconfiguration of internal GR flowgraphs during runtime, 
making the GC a powerful and flexible addition to the 
OSSIE waveform development. To combine the two 
platforms, the GC was originally written in Python alone 
because GR flowgraphs can be created in Python and OSSIE 
components can be implemented in Python. However, 
Python is not the ideal language for use in the critical path of 
a signal processing application due to the inherent slowness 
of a scripting language. For that reason, the processing core 
of the GC was re-written in Cython in hopes that the 
overhead that comes with increased functionality would be 
mitigated. Cython allows for the declaration of C types as 
well as using C-extensions in Python that allow Python 
programs to run at speeds much closer to that of C++ 
programs. Smaller tests have shown this to be very 

successful in terms of increasing the throughput of the GC to 
speeds closer to its limit, which is an OSSIE component 
implemented in Python that simply passes data without 
processing [1]. To test the utility of the GC’s capabilities 
against its overheard, two distributed waveforms were 
created to compare standard OSSIE solutions to GC 
solutions. Since OSSIE and GR are working in series, the 
GC can only be as fast as the slowest of these two platforms 
in any given environment. GR has been shown to be faster 
than OSSIE in some environments and slower in others 
[2][3][4].  The GC waveform capitalizes on the ability to 
encapsulate many DSP blocks in a single GR flowgraph 
within the GC as opposed to the OSSIE waveform, which 
contains numerous OSSIE components to accomplish the 
same task. 
 

2. METHODS 
 

The GC was tested on Virgnia Tech’s Cognitive Radio 
Network Testbed (CORNET) using two nodes, each 
equipped with an USRP2. Each node has a Quad Core 
Xenon E5506 that runs at 2.13 GHz and holds 12 GB of 
RAM. The nodes communicate with a gigabit switch and the 
USRP2 with gigabit ethernet.  Timing components were 
inserted into the waveforms to record timestamp and 
latency.  A waveform was created in OSSIE’s Eclipse-based 
waveform developer that was composed of a USRP_ 
Commander, timing component, two GC’s in series, and a 
final timing component. This waveform was distributed 
across two nodes on CORNET with the first node consisting 
of the USRP_Commander, timing component, a GC, and the 
final timing component. The second node consisted of a GC 
only (Figure 1). Note that the USRP_ Commander is not 
connected to the first component because the USRP2 logical 
device (not shown) is connected to that component and also  
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Figure 1, GC waveform 
 

Figure 2, OSSIE waveform 
 
connected to the physical USRP2. The USRP_Commander 
is connected to this logical device. This is the case for all of 
the following waveforms. 
 
Another waveform was created in the same way for the 
purpose of comparison which consisted of a 
USRP_Commander, timing component, amplifier, 
decimator, automatic gain control, WFM demodulator, 
another decimator, and another timing component. The node 
was also distributed across two nodes with the first node 
containing the USRP_Commander, timing component, and 
amplifier. The second node contained the decimator, 
automatic gain control, WFMDemodulator, another 
decimator, and timing component (Figure 2). 
 
 
These two waveforms both act as wide-band FM receivers, 
but how the signal is demodulated in both waveforms is 
different. This is to be expected since the first waveform 
uses the GR Digital Signal Processing (DSP) libraries and 
the second uses OSSIE components. The timing component 
mentioned in these waveforms is not part of the OSSIE 0.8.2 
release and was created specifically for this experiment to 
measure latency. These components pass all data and output 
the time in UTC according to the system clock. For this 
reason, the two timing components had to be deployed on  
the same node. Although the overheads added by these 
timing components were not computed, they are consistent 
between the two waveforms and do not obfuscate the 
comparison. Two additional waveforms were created for 
comparison which were deployed in the same way as the GC 
waveform. The first of these two waveforms did not use the 
Cython implementation of the GC (Figure 3). 
 
 

Figure 3, Pass_data waveform 

 Figure 4. GC waveform with no Cython 
 
The second of these two waveforms replaced the two GC’s 
with python pass\textunderscore data components (Figure 
4).  
 
Each of these waveforms were installed and started on two 
nodes and latency measurements were taken from between 
the two timing components. The processing blocks between 
timing components encase all of the DSP necessary to 
demodulate an FM signal. Each of these waveforms received 
100 packets of size 2048 and OSSIE data type 
complexShort.  
 

3. RESULTS 
 
The results are summarized in the following table: 
 
Waveform OSSIE 

Waveform 
Pass Data 
Waveform 

GC 
Waveform 

GC (No 
Cython) 
Waveform 

Average 
latency 
[ms] 

1.495 .933 4.296 160.06 
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4. DISCUSSION 
 

Comparing the C++ based OSSIE waveform and the Python 
based GC waveform reveals that indeed, there is a 
significant amount of overhead even though the GC can 
encapsulate many DSP blocks. It is also likely that this more 
pronounced than what can be seen here since the timing 
components have added some additional overhead. The 
difference between the GC waveform and the Python based 
pass data waveform shows that the GC is still about three 
times slower than the theoretical lower bound.  That limit 
does not account for the processing done by the GR 
components, so the limit on the GC's throughput is likely to 
be higher.  Since the entire GR infrastructure was invoked 
by the GC within an OSSIE component, and it was shown 
that GR can be slower than OSSIE under certain cases, this 
discrepancy in latency is not surprising. Comparing the 
Cython GC waveform with the with its non-Cython 
implementation shows the significant increase in throughput 
as a result of implementing the critical DSP path of the GC 
in Cython. 
 
These results indicate possible performance improvements if 
the GC were re-implemented in C++ instead of Python.  
Taking this approach would likely increase the throughput 
significantly due to the removal of slow scripting code.  If 
this were done, the GC would likely have latencies similar to 
C++ components and would likely offer a slightly more 
flexible alternative to many OSSIE waveforms. The GC 
would still suffer a slight overhead because the Python 
interpreter would still be necessary to run the core of the 
GC. 
 
Fundamentally, the GC serves the purpose of allowing the 
user to pick from any ordered set of pre-compiled DSP 
blocks that is offered by GR. To make a truly generic 
component, it might be much flexible to have a library of 
DSP modules that are invoked in the program in the order 
the user wishes. In this way, a library could be created from 
any platform by extracting the signal processing code. If 
done correctly, this could be implemented in any C++ based 
platform, so the component would not just be processing 
generic, but platform generic too. This would require 
something completely different from the current GC 
implementation, but the overarching idea is fundamentally 
the same. 

5. CONCLUSION 
 
Encapsulation of GR flowgraphs within the GC affords 
increased flexibility and granularity of DSP. This increased 
flexibility comes at the price of increased latency. By 
implementing the processing core of the GC in Cython, the 
GC’s throughput has increased dramatically. The GC in its 
current form will allow about a fourth of the same 
throughput that can be achieved by an OSSIE waveform 
alone. This may be a hindrance to some applications, but for 
others the capability for automated run-time compositional 
reconfiguration of a waveform under control of a cognitive 
engine will be worth the price of decreased throughput. 
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